G.S.C.E

SOLUTION OF BOAT&STREAM WITH EXPLANATION

18

Speed of the boat upstream = 36/9 = 4 kmph

Speed of the boat in downstream = 36/6 = 6 kmph

Speed of stream = 6-4/2 = 1 kmph

2A

$$\frac{d}{5-1} + \frac{d}{5+1} = \frac{75}{60}$$

$$\frac{d}{4} + \frac{d}{6} = \frac{5}{4}$$

$$5d/12 = 5/4 \Rightarrow d = 3k$$

3C

$$d/45 - d/50 = 1$$

=> d = 450 kms.

Hence, the total distance he covered in his way = $d + d = 2 d = 2 \times 450 = 900 \text{ kms}$.

4C 9km/h

5B

Sum of upstream & downstream = (X-Y) + (X+Y) = 2X

So, 2X= 40

 $X = 20 \, \text{km/hr}$

Speed of boat: speed of stream= 600+100:100=7:1

So speed of Stream= 20/7 km/hr

$$ATQ, D/(X-Y) + D/(X+Y) = 5$$

D/(120/7) + D/(160/7) = 5

 $D = 480 \times 5/49 = 48.97 \text{ km} = 50 \text{ Km}(approx)$

6D

$$(x+y)/y = 9/1 9y = x + y$$

x = 8y

 $y = 3 \, \text{km/hr}$

So, x = 24 km/hr

Upstream speed = 24-3 = 21 km/hr

Hence, distance travelled upstream in 5 hours = 21*5 = 105 km

7D

Speed of streamer = 4.5 km/hrSpeed of water = 1.5 km/hr

Downstream speed = 4.5+1.5 = 6 km/hr

Upstream speed = 4.5 - 1.5 = 3 km/hr

Average Speed = $(6 \times 3) / 4.5 = 4 \text{km/hr}$

ጸር

Speed of the stream = $1/2 \times (a-b) \times kmph$

Speed downstream a = 12kmph

Speed upstream b = 8 kmph

Speed of the stream = $1/2 \times (a-b) = 1/2 \times (12-8) = 4/2 = 2 \times (12-8)$

```
9A
Speed in downstream = (14 + 4) km/hr = 18 km/hr;
Speed in upstream = (14-4) km/hr = 10 km/hr.
Let the distance between A and B be x km. Then,
x/18 + (x/2)/10 = 19 \Leftrightarrow x/18 + x/20 = 19 \Rightarrow x = 180 \text{ k}
B-S = 15/5 = 3 \text{ km/h}
Again B= 4S
Therefore B-S = 3 = 3S
        S = 1 and B = 4 km/h
Therefore B+S = 5km/h
Therefore, Time during downstream = 15/5 = 3h
Speed of the stream = 1
Motor boat speed in still water be = x kmph
Down Stream = x + 1 kmph
Up Stream = x - 1 kmph
[35/(x+1)] + [35/(x-1)] = 12
x = 6 \text{ kmph}
12C
Speed in still water = 6 kmph
Stream speed = 1.2 kmph
Down stream = 7.2 kmph
Up Stream = 4.8 kmph
x/7.2 + x/4.8 = 1
x = 2.88
Total Distance = 2.88 \times 2 = 5.76 \text{ kms}
2 \times \frac{28}{p+q} = \frac{28}{p-q}
=> 56p - 56q -28p - 28q = 0
```

Now, given that if
$$\frac{28}{3q+2q} + \frac{28}{3q-2q} = \frac{672}{60}$$
$$=> \frac{28}{5q} + \frac{28}{q} = \frac{672}{60}$$

$$=> q = 3 kmph$$

=> 28p = 84q => p = 3q.

$$=> x = 3q = 9 \text{ kmph}$$

Hence, the speed of the boat = p kmph = 9 kmph and the speed of the river flow = q kmph = 3 kmph.

14B

If t1 and t2 are the upstream and down stream times. Then time taken $\,$

in still water is given by

$$\frac{2 \times t1 \times t2}{t1 + t2} = \frac{2 \times 12 \times 24}{36} = 16h$$

```
15D
Speed of Boy is B = 4.5 kmph
Let the speed of the stream is S = x kmph
Then speed in Down Stream = 4.5 + x
speed in Up Stream = 4.5 - x
As the distance is same,
=>4.5+x=(4.5-x)2
=>4.5+x=9-2x
3x = 4.5
x = 1.5 \text{ kmph}
Speed in still water = Average of Speed in Upstream and speed in
Downstream
= 1/2 (12 + 6) \text{ kmph} = 9 \text{ kmph}.
17C
Given speed of the person = 81/2 = 17/2 kmph
Let the speed of the stream = x kmph
speed of upstream = 17/2 - x
speed of downstream = 17/2 + x
But given that,
2(17/2 - x) = 17/2 + x
=> 3x = 17/2
=> x = 2.83 kmph.
 \frac{12}{9+x} + \frac{12}{9-x} = 3 \ h
3x^2 = 27
=> x = 3 \text{ kmph}
19A
i.e, \frac{d}{8-C}\,=\,3\,	imes\,\frac{d}{8+C}
\Rightarrow 24 - 3C = 8 + C
\Rightarrow 4C = 16
\Rightarrow C = 4 kmph
20B
Given, U + D = 82
b - w + b + w = 82
2b = 82
=> b = 41 \text{ kmph}
From the given data,
41 - w = 105/3 = 35
w = 6 \text{ kmph}
Now,
```

b + w = 126/t => 41 + 6 = 126/t

=> t = 126/47 = 2.68 hrs.

```
21A
(p + s) x 10 = (p - s) x 15
2p + 2s = 3p - 3s
=> p:s=5:1
Speed of the current = 24-16/2
= 8/2
= 4 \,\mathrm{km/hr}.
23C
d/x+y + d/x-y = 5h 15m \text{ or } 21/4 \text{ hrs .....(i)}
and 2d/x-y = 7..... (ii)
From eq. (i) and (ii)
2d/x+y = 7/2
Hence, Amith will take to row 2d km distance downstream in 7/2 hrs
= 3.5 hrs
= 3 hrs 30 min.
Speed in upstream = Distance / Time = 3 \times 60/20 = 9 \text{ km/hr}.
Speed in downstream = 3 \times 60/18 = 10 \text{ km/hr}
Rate of current = (10-9)/2 = 1/2 \text{ km/hr}.
25A
Speed of the boat downstream s=a/t=60/3=20 kmph
Speed of the boat upstream s = d/t = 30/3 = 10 \text{ kmph}
Therefore, The speed of the stream =
speed of downstream – speed of upstream = 5 kmph
```