Total numbers = 70

Total numbers in 1 to 70 which has 1 in the unit digit = 7

Total numbers in 1 to 70 which has 9 in the unit digit = 7

Total numbers in 1 to 70 which has 1 or 9 in the unit digit = 7 + 7 = 14

Required percentage

$$=\frac{14}{70}\times 100 = \frac{140}{7} = 20\%$$

20

Total number of votes = 7500

20% votes were invalid.

Therefore, 80% votes were valid.

i.e., total valid votes =
$$7500 \times \frac{80}{100}$$

1st candidate got 55% of the total valid votes.

Hence 2nd candidate got 45% of the total valid votes

Therefore, valid votes that the 2nd candidate got

$$=7500\times\frac{80}{100}\times\frac{45}{100}$$

$$=75\times\frac{4}{5}\times45$$

$$=75 \times 4 \times 9$$

$$= 300 \times 9$$

$$= 2700$$

3A

Equal number of candidates appeared in each state.

In state A, 6% candidates got selected.

In state B, 7% candidates got selected.

Given that 80 more candidates got selected in state B than A.

Therefore, 1% of candidates appeared in each state = 80

=> 100% of candidates appeared in each state =
$$80 \times 100 = 8000$$

i.e., number of candidates appeared from each state = 8000

40

$$\frac{6}{24} \times 100 = 25\%$$

50

The student got 125 marks and still failed by 40 marks.

$$=>$$
 mark required to pass $=125+40=165$

Therefore, 33% of the total marks =165

=> 100% of the total marks =
$$\frac{165 \times 100}{33} = 500$$

Given that (x + 9) was 56% of the sum of their marks.

$$\Rightarrow$$
 $(x+9) = \frac{56}{100}(2x+9)$

$$\Rightarrow (x+9) = \frac{14}{25}(2x+9)$$

$$\Rightarrow 25x + 225 = 28x + 126$$

$$\Rightarrow 3x = 99$$

$$\Rightarrow x = 33$$

Then (x+9) = 33 + 9 = 42

7Α

$$A = \frac{x}{100} \times y = \frac{xy}{100} \cdot \cdot \cdot (1)$$

$$B = \frac{y}{100} \times x = \frac{yx}{100} \cdot \cdot \cdot (2)$$

Therefore A = B

٩R

$$\Rightarrow b = \frac{20a}{100} = \frac{a}{5}$$

$$b\% \text{ of } 20 = 20 \times \frac{b}{100}$$

$$= \frac{b}{5} = \frac{a}{5} \times \frac{1}{5} = \frac{a}{25}$$

$$=\frac{4a}{100}=4\% ext{ of } a$$

98

5% of A + 4% of B =
$$\frac{2}{3}$$
 (6% of A + 8% of B)

$$\Rightarrow \frac{5A}{100} + \frac{4B}{100} = \frac{2}{3} \left(\frac{6A}{100} + \frac{8B}{100} \right)$$

$$=> 5A + 4B = \frac{2}{3}(6A + 8B)$$

$$=> 3A = 4B$$

$$\Rightarrow \frac{A}{B} = \frac{4}{3}$$

$$=> A : B = 4 : 3$$

10A

Let the amount paid to X per week = xand the amount paid to Y per week = y

Then
$$x + y = 550 \cdots (1)$$

But
$$x = 120\%$$
 of $y \cdots (2)$

From (1) and (2),

$$120\%$$
 of $y + 100\%$ of $y = 550$

220% of
$$y = 550$$

$$y = \frac{550 \times 100}{220} = 250$$

11A

Quantity of pure acid =
$$8 \times \frac{20}{100} = 1.6$$

12D

Price of the car = Rs.3,25,000

Car was insured to 85% of its price

Insured price =
$$325000 \times \frac{85}{100}$$

Insurance company paid 90% of the insurance.

Amount paid by insurance company

$$=325000\times\frac{85}{100}\times\frac{90}{100}$$

$$=325\times85\times9$$

$$= 248625$$

Difference between the price of the car and the amount received

$$=325000-248625$$

$$= Rs.76375$$

13D

y is 10% more than 125

$$\Rightarrow y = 125 + 12.5 = 137.5$$

x is 10% less than y

$$\Rightarrow x = 137.5 - 13.75 = 123.75$$

14A

Actual price = Rs.25 + Rs.2.50 = Rs.27.5

Saving =
$$Rs.2.5$$

Saving percent

$$= \frac{2.5}{27.5} \times 100 = \frac{250}{27.5} = \frac{2500}{275}$$
$$= \frac{100}{11} = 9\frac{1}{11}\%$$
$$\approx 9\%$$

15B

145% of Y's length = 30 meter

Therefore, Y's length
$$= \frac{30 \times 100}{145} = 20.68$$

16A

tax is 6%.

i.e., Rs.o.3 is 6% of the taxable item.

Therefore, cost of taxable item
$$= \frac{0.3 \times 100}{6} = 5$$

cost of the tax free items =
$$25 - (0.3 + 5) = 19.7$$

17A

increase in the population in 10 years

$$= 262500 - 175000 = 87500$$

percent increase in the population in 10 years

$$=\frac{87500}{175000} \times 100 = \frac{8750}{175} = 50\%$$

average percent increase of population per year

$$=\frac{50\%}{10}=5\%$$

votes received by the winning candidate = 11628

total votes =
$$1136 + 7636 + 11628 = 20400$$

Required percentage

$$= \frac{11628}{20400} \times 100 = \frac{11628}{204}$$
$$= \frac{2907}{51} = \frac{969}{17} = 57\%$$

60% of oranges = 420

100% of oranges
$$=\frac{420\times100}{60}=700$$

i.e., total oranges = 700

20D

Total runs scored = 110

Total runs scored from boundaries and sixes

$$= 3 \times 4 + 8 \times 6 = 60$$

Total runs scored by running between the wickets

$$=110-60=50$$

$$\begin{aligned} & \text{Required percent} \\ &= \frac{50}{110} \times 100 = \frac{500}{11} = 45 \frac{5}{11} \% \end{aligned}$$

20% of students are below 8 years of age

=> number of students whose age
$$\geq 8$$
 years = 80% of $x \cdots (1)$

number of students whose age is 8 years = $48 \cdot \cdot \cdot (2)$

number of students whose age is greater than 8 years

$$=48 imes rac{2}{3} = 32 \cdots (3)$$

From (1),(2) and (3),

80% of
$$x = 48 + 32 = 80$$

=> 100% of
$$x = \frac{80 \times 100}{80} = 100$$

$$=> x = 100$$

220

85% of the eligible candidates belonged to general category

Therefore remaining 15% belonged to other categories.

=> eligible candidates =
$$\frac{4275 \times 100}{15} = 28500$$

5% of the applicants were ineligible.

Therefore, remaining 95% were eligible.

$$=>95\%$$
 of applicants $=28500$

=> number of applicants =
$$\frac{28500 \times 100}{95}$$
 = 30000

23C

Let the number = 15

$$\text{correct result} = 15 \times \frac{5}{3} = 25$$

result with the error =
$$15 imes rac{3}{5} = 9$$

$$error = 25 - 9 = 16$$

percentage error

$$=\frac{16}{25}\times 100=64\%$$

24B

Pass percentage
$$= \frac{252}{270} \times 100 = \frac{2520}{27} = \frac{280}{3} = 93\frac{1}{3}\%$$

25C

Let John's initial salary = Rs.100

After decreasing by 50%, John's salary = Rs. 50 (because it will become half)

After subsequently increasing by 50%, John's salary

$$= 50 \times \frac{100 + 50}{100} = 50 \times \frac{150}{100} =$$
Rs.75

$$Loss = 100 - 75 = Rs.25$$

$$Loss percent = \frac{25}{100} \times 100 = 25\%$$